Hydrodynamic cavitation in Stokes flow of anisotropic fluids

نویسندگان

  • Tillmann Stieger
  • Hakam Agha
  • Martin Schoen
  • Marco G Mazza
  • Anupam Sengupta
چکیده

Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution for Gate Induced Vibration Due to Under Flow Cavitation

Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...

متن کامل

Investigation of the Flow and Cavitation in a Butterfly Valve

Since knowledge on hydrodynamic torque of a butterfly valve is very important for butterfly valve design, its hydrodynamic torque is investigated in this paper. In reality, the investigation of the loss coefficient and torque from some experiments will take a long time and a lot of money. This paper presents a statistical study of the flow past the butterfly valve in a static analysis using com...

متن کامل

Micro-Roughness Effects in (Elasto)Hydrodynamic Lubrication Including a Mass-Flow Preserving Cavitation Model

An average Reynolds equation is proposed for predicting the effects of deterministic periodic roughness, taking JFO mass flow preserving cavitation model and elastohydrodynamic effects into account. For this, the asymptotic model is based upon double scale analysis approach. The average Reynolds equation can be used both for microscopic interasperity cavitation and macroscopic one. The validity...

متن کامل

Numerical Study of the tongue geometry effects on the cavitation and performance of a centrifugal pump in off-design conditions

In this study, the effects of the volute tongue geometry variation on the head, efficiency, velocity distribution and cavitation structure of a centrifugal pump in the steady flow behavior under off-design conditions have been investigated. Numerical simulation modeling based on the  turbulence model with a hybrid grid is used to simulate the flow within the modeled pump. The flow is simulated ...

متن کامل

Numerical simulation of turbulent flow around the dtmb4119 propeller in open water conditions

In this study, ANSYS-FLUENT packages are employed to simulate the turbulent flow around DTMB4119 propeller in open water conditions. In order to form a mesh, the multiple reference frame (MRF) methodology is used. The results are compared with the experimental results and a good conformity is obtained, which endorses numerical simulation. Furthermore, the  turbulence model is used, which is sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017